a2 United States Patent

Gruschko et al.

US009098549B2

US 9,098,549 B2
Aug. 4, 2015

(10) Patent No.:
(45) Date of Patent:

(54) METHOD FOR BUNDLED PREPARATION
AND EXECUTION OF MULTIPLE DATABASE
STATEMENTS

(75) Inventors: Boris Gruschko, Heidelberg (DE);
Christian Mohr, Heidelberg (DE);
Martin Strenge, Nussloch (DE)

(73) Assignee: SAP SE, Walldorf (DE)
(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 318 days.

(21) Appl. No.: 13/212,109

(22) Filed: Aug. 17,2011

(65) Prior Publication Data
US 2013/0046743 Al Feb. 21, 2013

(51) Imt.ClL
GO6F 17/30

(52) US.CL
CPC GOGF 17/30442 (2013.01); GO6F 17/30448
(2013.01); GO6F 17/30463 (2013.01)

(58) Field of Classification Search

CPC ..ot GOG6F 17/30442; GOGF 17/30448,;
GOG6F 17/30474; GOGF 17/30545; GO6F
17/30539; GO6F 17/30935; GOGF 17/30463;
Y10S 707/99933; Y10S 707/99934
USPC 717/141, 149, 150, 151, 160; 707/602,

(2006.01)

707/713-714, 718, 737, 760, 768, 772
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,596,745 A * 1/1997 Laietal.ooviiinins /1
2005/0165802 Al* 7/2005 Sethietal. 707/100
2008/0250046 Al* 10/2008 Nelsoncccceevvviennne 707/101

* cited by examiner

Primary Examiner — Jason Liao

Assistant Examiner — Berhanu Mitiku

(74) Attorney, Agent, or Firm — Mintz Levin Cohn Ferris
Glovsky and Popeo, P.C.

(57) ABSTRACT

A system and method for preparing and executing multiple
database statements to minimize communication overhead
between a client application and a database, the method is
presented. Multiple database statements are registered for
preparation and execution, the registering further including
bundling of preparation operations for the multiple database
statements and bundling of execution operations for multiple
database statements. All of the bundled preparation opera-
tions and execution operations for the multiple database state-
ments are executed in a single transaction between the client
application and the database, and thereafter results of the
preparation operations and the execution operations are
accessible by a client application.

12 Claims, 3 Drawing Sheets

302

REGISTER SQL STATEMENTS FOR /
PREPARATION AND EXECUTION

DEFINE DEPENDENCIES BETWEEN SQL /
STATEMENTS

306

TRIGGER PROCESSING OF REGISTERED /
SQL STATEMENTS

308

TRANSFER INPUT DATA FOR ALL)
m STATEMENTS TO DATABASE

310

EXECUTE PROCESSING IN ORDER [J

312

TRANSFER OUTPUT DATA FOR ALL /
STATEMENTS BACK TO CLIENT
APELICATION

314

ACCESS STATUS INFORMATION AND _/
RESULTS OF OPERATIONS

U.S. Patent Aug. 4, 2015 Sheet 1 of 3 US 9,098,549 B2

CLIENT SYSTEM /103
CLIENT APPLICATION \\
105
DB CLIENT 111
BUNDLED EXECUTION AND //
PREPARATION SERVICE 107
_ e
DB CLIENT API(s) /’\\
100
100 : 109
A
Y 102
106
SQL LAYER I
DATABASE
104
SERVER SYSTEM

FIG. 1

U.S. Patent

Aug. 4, 2015 Sheet 2 of 3 US 9,098,549 B2
202
REGISTER SQL STATEMENTS /
y 204
PROCESS SQL STATEMENTS
y 206

ACCESS RESULTS

FIG. 2

U.S. Patent

(o8}
(e}
(e}

|

FIG. 3

Aug. 4, 2015 Sheet 3 of 3

REGISTER SQL STATEMENTS FOR
PREPARATION AND EXECUTION

DEFINE DEPENDENCIES BETWEEN SQL
STATEMENTS

TRIGGER PROCESSING OF REGISTERED
SQL STATEMENTS

TRANSFER INPUT DATA FOR ALL
STATEMENTS TO DATABASE

EXECUTE PROCESSING IN ORDER

TRANSFER OUTPUT DATA FOR ALL
STATEMENTS BACK TO CLIENT
APPLICATION

ACCESS STATUS INFORMATION AND
RESULTS OF OPERATIONS

302

304

306

308

310

312

314

US 9,098,549 B2

US 9,098,549 B2

1
METHOD FOR BUNDLED PREPARATION
AND EXECUTION OF MULTIPLE DATABASE
STATEMENTS

BACKGROUND

This disclosure relates generally to database management
systems, and more particularly to a method and system for
bundled preparation and execution of multiple database state-
ments.

Structured Query Language (SQL) is a language for man-
aging data in database management systems (DBMSs), and
an important language element of SQL is the SQL statement.
Database client (DB client) software provides database client
applications with a database client application programming
interface (API) for accessing, manipulating, and managing
data in the DBMS. A client application (together with the DB
client) and a database potentially run on different intercon-
nected computer systems in a heterogeneous computer sys-
tem landscape. Object oriented DB client APIs often provide
a statement class or a similar concept which embodies the
semantics of an executable SQL statement.

A family of DB client APIs, for example open database
connectivity (ODBC) or Java database connectivity (JDBC),
provides a mechanism to establish connections to a database
and interact with a connected database by means of SQL
statements. The DB client API allows client applications to
send an SQL statement, potentially together with input data,
to the database system where it is executed by the DBMS.
After execution of the SQL statement, output data is trans-
ferred back to the client DB system, where it is accessible by
means provided by the DB client API.

Each DB client application API has to prepare a set of SQL
statements P={p1, p2, . . . pm} for later execution as well as
to execute a set of statements S={s1, s2, . . . sn}. Moreover,
dependencies between the elements of P and S may exist,
meaning that each statement (in the union U of P and S)
potentially depends on one or more other statements (ele-
ments of U). However, the dependencies always result in a
directed acyclic dependency graph.

The preparation and execution of all those statements leads
to a number of roundtrips between client application and
database. Since the number of roundtrips has a significant
impact on the overall performance, there are scenarios in
which the preparation of multiple statements in conjunction
with the additional execution of statements imposes a signifi-
cant negative effect on the overall performance, especially
when data transport over a network is involved.

SUMMARY

In general, this document discloses techniques and plat-
forms for bundled preparation and execution of multiple data-
base statements.

In one aspect, a computer-implemented method for prepar-
ing and executing multiple database statements to minimize
communication overhead between a client application and a
database is provided. The method includes registering the
multiple database statements for preparation and execution,
the registering further including bundling of preparation
operations for the multiple database statements and bundling
of'execution operations for multiple database statements. The
method further includes executing, by a processor in a server
system associated with the database, all of the bundled prepa-
ration operations and execution operations for the multiple
database statements in a single transaction between the client
application and the database. The method further includes

10

15

20

25

30

35

40

45

50

55

60

65

2

accessing, by a processor in the client application, results of
the preparation operations and the execution operations.

In another aspect, a computer-implemented method for
minimizing communication overhead between a client appli-
cation and a database includes the steps of bundling prepara-
tion operations for multiple database statements, defining
dependencies between the multiple database statements, bun-
dling execution operations for the multiple database state-
ments, and processing the multiple database statements in a
single transaction between the client application and the data-
base.

In yet another aspect, a system for minimizing communi-
cation overhead between a client application and a database
includes a server system that hosts the database, and a client
system hosting the client application. The client system
includes one or more client application programming inter-
faces (APIs) for communicating with a system query lan-
guage layer of the database on the server system. The system
further includes a bundled execution and preparation service
associated with the one or more client APIs, the bundled
execution and preparation service bundling preparation
operations for multiple database statements and bundling
execution operations for the multiple database statements.
The system further includes a processor in the server system
that processes the multiple database statements in a single
transaction between the client application and the database.

The details of one or more embodiments are set forth in the
accompanying drawings and the description below. Other
features and advantages will be apparent from the description
and drawings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects will now be described in detail
with reference to the following drawings.

FIG. 1 illustrates a system for executing bundled prepara-
tion and execution of multiple database statements.

FIG. 2 is a flowchart of a method for executing bundled
preparation and execution of multiple database statements.

FIG. 3 is a flowchart of the method shown in FIG. 2 in
greater detail.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

This document describes techniques for executing bundled
preparation and execution of multiple database statements.
FIG. 1 illustrates a system 100 for executing such techniques.
The system 100 includes a server system 102 with a client
system 103 that executes database transactions, typically at
the request or instruction from the client system 103. The
client system 103 can be a computer, such as a laptop or
desktop computer, a mobile device, or other type of data
processor. The client system 103 includes a client application
105, preferably software that is executed by a processor of the
client system 103. The client system 103 further includes a
database (DB) client 107 that interacts with a database 104 on
the server system 102 via one or more DB client application
programming interfaces (APIs) 109. The DB client APIs 109
specify a communication interface with the database 104, and
for accessing, manipulating and managing data in the data-
base 104. The DB client 107 also includes a bundled execu-
tion and preparation service 111, that functions as described
below.

The database 104 includes any number of data processors
and storage media for providing the database. The database

US 9,098,549 B2

3

104 can be any type of database, such as a relational database
or an in-memory database (i.e. data stored and organized on
main memory of the server system). The bundled execution
and preparation service 111 bundles multiple SQL statements
for being sent to an SQL layer 106 of the database 104 for
execution or preparation.

To optimize performance, the DB client 107 prepares an
SQL statement for execution. Object oriented DB client APIs
109 can provide a prepared statement class, or a similar object
that embodies the semantics of a first prepared and later
executed SQL statement. During a preparation step the state-
ment is preprocessed by the database 104 to enable a more
efficient, parallel execution afterwards using different input
data.

DB client APIs 109 utilize the bundled execution and
preparation service 111 to bundle multiple statement execu-
tion and preparation operations. This covers both bundling of
multiple statements for execution, as well as bundling mul-
tiple statements for preparation. The functionality that is pro-
vided depends on the capabilities of the specific DB client
API 109. Bundling execution operations of different kinds is
called batch or group execution.

Accordingly, the DB client 107 can transfer the input data
of all execution operations in one single step from the client
system 103 to the SQL layer 106 of the database 104 of the
server system 102. The same is true for the output data of all
the execution operations. The bundling of execution opera-
tions improves the overall performance by reducing the total
number of roundtrips between client system 103 and the
server system 102.

As described above, the DB client 107 provides a method,
exposed as part of the DB client API 109, that enables (a) the
bundling of preparation operations for multiple statements
combined with (b) the bundling of execution operations for
multiple statements. As shown in FIG. 2, the interaction of a
client application 105 with the DB client API 109 generally
includes three main steps: registration of multiple SQL state-
ments (202) at the DB client; 2) processing of the bundled,
registered SQL statements (204) in a single roundtrip
between the client system 103 and the server system 102; and
accessing the results of the bundled registered SQL state-
ments. Each of these steps is explained in further detail below
and with reference to FIG. 3.

1. Registration: As shown in FIG. 3, at 302, the client
application registers SQL statements (a) for preparation and
(b) for execution. At 304, dependencies that potentially exist
between those statements are defined explicitly or implicitly
(e.g. the registration order can reflect all existing dependen-
cies). Steps 302 and 304 can be executed in any order, and
may occur simultaneously in a single process step.

II. Processing: At 306 the client application triggers the
processing. This leads to only one single roundtrip between
the client application and the database. During this roundtrip,
at 308 the input data for all statement is transferred to the
database, and then all statements are prepared and executed in
correct order, at 310. At 312 the output data for all statement
is transferred back to the client application.

III. Accessing results: At 314, the client application can
access status information (including errors) and the results of
the execution and preparation operations.

Object oriented DB client APIs, for example, can provide
the executed SQL statements as instances of class statement
and the prepared SQL statements as instances of class pre-
pared statement. This would allow client applications to
handle the results of the overall operation conveniently. The
bundling enables the preparation of multiple statements for
later execution together with the execution of multiple state-

10

15

20

25

30

35

40

45

50

55

60

65

4

ments in one single roundtrip between client application and
database. This limits the communication overhead, indepen-
dently of the dependency graph between statements.

Some or all of the functional operations described in this
specification can be implemented in digital electronic cir-
cuitry, or in computer software, firmware, or hardware,
including the structures disclosed in this specification and
their structural equivalents, or in combinations of them.
Embodiments of the invention can be implemented as one or
more computer program products, i.e., one or more modules
of computer program instructions encoded on a computer
readable medium, e.g., a machine readable storage device, a
machine readable storage medium, a memory device, or a
machine-readable propagated signal, for execution by, or to
control the operation of, data processing apparatus.

The term “data processing apparatus” encompasses all
apparatus, devices, and machines for processing data, includ-
ing by way of example a programmable processor, a com-
puter, or multiple processors or computers. The apparatus can
include, in addition to hardware, code that creates an execu-
tion environment for the computer program in question, e.g.,
code that constitutes processor firmware, a protocol stack, a
database management system, an operating system, or a com-
bination of them. A propagated signal is an artificially gener-
ated signal, e.g., a machine-generated electrical, optical, or
electromagnetic signal, that is generated to encode informa-
tion for transmission to suitable receiver apparatus.

A computer program (also referred to as a program, soft-
ware, an application, a software application, a script, or code)
can be written in any form of programming language, includ-
ing compiled or interpreted languages, and it can be deployed
in any form, including as a stand alone program or as a
module, component, subroutine, or other unit suitable for use
in a computing environment. A computer program does not
necessarily correspond to a file in a file system. A program can
be stored in a portion of a file that holds other programs or data
(e.g., one or more scripts stored in a markup language docu-
ment), in a single file dedicated to the program in question, or
in multiple coordinated files (e.g., files that store one or more
modules, sub programs, or portions of code). A computer
program can be deployed to be executed on one computer or
on multiple computers that are located at one site or distrib-
uted across multiple sites and interconnected by a communi-
cation network.

The processes and logic flows described in this specifica-
tion can be performed by one or more programmable proces-
sors executing one or more computer programs to perform
functions by operating on input data and generating output.
The processes and logic flows can also be performed by, and
apparatus can also be implemented as, special purpose logic
circuitry, e.g., an FPGA (field programmable gate array) or an
ASIC (application specific integrated circuit).

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read only memory or a
random access memory or both. The essential elements of a
computer are a processor for executing instructions and one
or more memory devices for storing instructions and data.
Generally, a computer will also include, or be operatively
coupled to, a communication interface to receive data from or
transfer data to, or both, one or more mass storage devices for
storing data, e.g., magnetic, magneto optical disks, or optical
disks.

Moreover, a computer can be embedded in another device,
e.g., amobile telephone, a personal digital assistant (PDA), a

US 9,098,549 B2

5

mobile audio player, a Global Positioning System (GPS)
receiver, to name just a few. Information carriers suitable for
embodying computer program instructions and data include
all forms of non volatile memory, including by way of
example semiconductor memory devices, e.g., EPROM,
EEPROM, and flash memory devices; magnetic disks, e.g.,
internal hard disks or removable disks; magneto optical disks;
and CD ROM and DVD-ROM disks. The processor and the
memory can be supplemented by, or incorporated in, special
purpose logic circuitry.

To provide for interaction with a user, embodiments of the
invention can be implemented on a computer having a display
device, e.g., a CRT (cathode ray tube) or LCD (liquid crystal
display) monitor, for displaying information to the user and a
keyboard and a pointing device, e.g., a mouse or a trackball,
by which the user can provide input to the computer. Other
kinds of devices can be used to provide for interaction with a
user as well; for example, feedback provided to the user can
be any form of sensory feedback, e.g., visual feedback, audi-
tory feedback, ortactile feedback; and input from the user can
be received in any form, including acoustic, speech, or tactile
input.

Embodiments of the invention can be implemented in a
computing system that includes a back end component, e.g.,
as a data server, or that includes a middleware component,
e.g., an application server, or that includes a front end com-
ponent, e.g., a client computer having a graphical user inter-
face or a Web browser through which a user can interact with
an implementation of the invention, or any combination of
such back end, middleware, or front end components. The
components of the system can be interconnected by any form
or medium of digital data communication, e.g., a communi-
cation network. Examples of communication networks
include a local area network (“LLAN”) and a wide area net-
work (“WAN”), e.g., the Internet.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.

Certain features which, for clarity, are described in this
specification in the context of separate embodiments, may
also be provided in combination in a single embodiment.
Conversely, various features which, for brevity, are described
in the context of a single embodiment, may also be provided
in multiple embodiments separately or in any suitable sub-
combination. Moreover, although features may be described
above as acting in certain combinations and even initially
claimed as such, one or more features from a claimed com-
bination can in some cases be excised from the combination,
and the claimed combination may be directed to a subcom-
bination or variation of a subcombination.

Particular embodiments of the invention have been
described. Other embodiments are within the scope of the
following claims. For example, the steps recited in the claims
can be performed in a different order and still achieve desir-
ableresults. In addition, embodiments of the invention are not
limited to database architectures that are relational; for
example, the invention can be implemented to provide index-
ing and archiving methods and systems for databases built on
models other than the relational model, e.g., navigational
databases or object oriented databases, and for databases
having records with complex attribute structures, e.g., object
oriented programming objects or markup language docu-
ments. The processes described may be implemented by

10

20

25

40

45

55

60

6

applications specifically performing archiving and retrieval
functions or embedded within other applications.
The invention claimed is:
1. A computer-implemented method for preparing and
executing multiple database statements to minimize commu-
nication overhead between a client application and a data-
base, the method comprising:
registering the multiple database statements for prepara-
tion and execution, the registering further comprising
bundling of preparation operations for the multiple data-
base statements, bundling of execution operations for
multiple database statements, and defining dependen-
cies between the multiple database statements prior to
executing the bundled preparation operations and the
execution operations of the multiple statements, wherein
the defining further comprises explicitly defining depen-
dencies between the multiple database statements prior
to executing the bundled preparation operations and the
execution operations of the multiple statements;

executing, by a processor in a server system associated
with the database, all of the bundled preparation opera-
tions and execution operations for the multiple database
statements in a single transaction between the client
application and the database to generate at least one
instance of a class statement representative of at least
one executed statement and at least one instance of a
class prepared statement representative of at least one
prepared statement; and

accessing, by a processor in the client application, results

of the preparation operations and the execution opera-
tions, the results containing the at least one instance of
the class statement and the at least one instance of the
class prepared statement.

2. The method in accordance with claim 1, wherein the
defining further comprises at least one of the following:
implicitly defining dependencies between the multiple data-
base statements prior to executing the bundled preparation
operations and the execution operations of the multiple state-
ments, and explicitly defining dependencies between the mul-
tiple database statements prior to executing the bundled
preparation operations and the execution operations of the
multiple statements.

3. The method in accordance with claim 1, wherein the
bundled preparation operations and execution operations are
executed in order of the multiple statements and dependen-
cies defined between the multiple statements.

4. The method in accordance with claim 1, further com-
prising:

transferring input data for the multiple database statements

to the database during the executing.

5. The method in accordance with claim 4, further com-
prising:

transferring output data for the multiple database state-

ments to the client application.

6. A computer-implemented method for minimizing com-
munication overhead between a client application and a data-
base, the method comprising:

bundling preparation operations for multiple database

statements;

defining dependencies between the multiple database

statements, wherein the defining further comprises
explicitly defining dependencies between the multiple
database statements prior to executing the bundled
preparation operations and the execution operations of
the multiple statements;

bundling execution operations for the multiple database

statements;

US 9,098,549 B2

7

processing the multiple database statements in a single
transaction between the client application and the data-
base;

executing, by a processor in a database management sys-
tem associated with the database, all of the bundled
preparation operations and bundled execution opera-
tions for the multiple database statements to generate at
least one instance of a class statement representative of
at least one executed statement and at least one instance
of a class prepared statement representative of at least
one prepared statement, and

accessing, by a processor in the client application, results
of the processing, the results containing the at least one
instance of the class statement and the at least one
instance of the class prepared statement.

7. The method in accordance with claim 6, wherein the
bundled preparation operations and execution operations are
executed in order of the multiple statements and dependen-
cies defined between the multiple statements.

8. The method in accordance with claim 6, further com-
prising:

transferring input data for the multiple database statements
to the database during the executing.

9. The method in accordance with claim 6, further com-

prising:

transferring output data for the multiple database state-
ments to the client application.

10. A system for minimizing communication overhead
between a client application and a database, the system com-
prising:

a server system that hosts the database;

aclient system hosting the client application and including
one or more client application programming interfaces
(APIs) for communicating with a system query language
layer of the database on the server system;

a bundled execution and preparation service associated
with the one or more client APIs, the bundled execution
and preparation service bundling preparation operations
for multiple database statements, bundling execution

10

15

30

35

8

operations for the multiple database statements, and
defining dependencies between the multiple database
statements prior to executing the bundled preparation
operations and the execution operations of the multiple
statements, wherein the defining further comprises
explicitly defining dependencies between the multiple
database statements prior to executing the bundled
preparation operations and the execution operations of
the multiple statements; and

aprocessor in the server system that processes the multiple

database statements in a single transaction between the
client application and the database, the processor
executes all of the bundled preparation operations and
execution operations for the multiple database state-
ments in a single transaction between the client applica-
tion and the database to generate at least one instance of
a class statement representative of at least one executed
statement and at least one instance of a class prepared
statement representative of at least one prepared state-
ment;

wherein a processor in the client application accesses the

results of the preparation operations and the execution
operations, the results containing the at least one
instance of the class statement and the at least one
instance of the class prepared statement.

11. The system in accordance with claim 10, wherein the
bundled execution and preparation service defines dependen-
cies between the multiple database statements by performing
atleast one ofthe following: implicitly defining dependencies
between the multiple database statements prior to executing
the bundled preparation operations and the execution opera-
tions of the multiple statements, and explicitly defining
dependencies between the multiple database statements prior
to executing the bundled preparation operations and the
execution operations of the multiple statements.

12. The system in accordance with claim 10, wherein the
bundled execution and preparation service is hosted on client
system.

